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Abstract

Initiation of cylindrical structures by buckling or necking in an anisotropic power-law fluid is treated for general plane flow. The principal

axis of anisotropy, x 0, in the stiffest direction in shortening or extension may be viewed as the trace of a foliation or lamination. Plane-flow

constitutive relations between components of rate of deformation, D0
xx and D0

xy, and of deviatoric stress, s0xx and s0xy, for the fluid are

D0
xxZBðY 0

2Þ
½ðnK1Þ=2�s0xx and D0

xyZa2BðY 0
2Þ

½ðnK1Þ=2�s0xy, where Y 0
2Z ðs0xxÞ

2Ca2ðs0xyÞ
2 is an anisotropic invariant, a2 is the anisotropy parameter,

and n is the stress exponent. We determine the rate of amplification of wavelength components in the deflection of the foliation, q, from a

mean orientation parallel to x. Linearly independent, or non-interacting normal modes have a periodic, band-like form

qðx; yÞyvz=vxZKðlAÞsin½lðxKvyÞ�, where z is the height of a foliation trace above its mean plane, vZtanb, where b is the angle

between the normal to mean foliation and the axial surface, positive clockwise, and LZ2p/l is the foliation-parallel wavelength. Evolution of

a component may be followed through a finite bulk deformation provided q remains/1. The growth rate of slope, lA, is independent of L.
Components with axial plane normal to the foliation (bZ0) are strongly amplified in foliation-parallel shortening. If nOO1, internal

necking (boudinage) occurs in foliation-parallel extension for components with axial plane inclined at a large angle to the foliation normal. In

combined shortening and shear, the most rapidly growing component has an axial plane that dips steeply in the direction of shear. For nO1,

maximum instability occurs for combined foliation-parallel shear and shortening rather than pure shortening. Weak instability is present in

foliation-parallel shear.

This anisotropic nonlinear fluid approximates the behavior of an isotropic power-law medium containing preferentially oriented but

anastomosing slip surfaces, or that of a rock in which a stiffer component of lenticular form is embedded in a softer matrix.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

An anisotropic continuum with the bulk behavior of a

composite rock that is layered, made up of aligned lenticular

elements, or has lattice preferred orientation may be used to

model several types of tectonic structures (Bayly, 1964;

Cobbold et al., 1971; Cobbold, 1976) whose scale is much

greater than the microscopic scale of the composite’s

constituents. For example, Bayly (1964, 1970, 1974)

modeled similar folding in an anisotropic viscous fluid.

Casey and Huggenberger (1985) used this mathematically

one-dimensional analysis to treat finite-amplitude folding
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for an arbitrary history of bulk deformation. Cobbold et al.

(1971) applied a formulation and analysis of Biot (1965a) to

show how structures produced in naturally and experimen-

tally deformed materials could be interpreted as modes of

internal instability of an anisotropic medium. Latham

(1985a,b) incorporated into this analysis the rheological

nonlinearity of the constituents of a bilaminate material and

the bending resistance of the constituent layers.

The results of Cobbold et al. (1971) and Latham

(1985a,b) are based on a formulation and analysis for

incremental deformation of an elastic or viscoelastic

material and in a limiting sense, to a viscous fluid. It is

less clear that Latham’s treatment applies to a linear or

nonlinear viscous fluid. A condition for such application

is that the instability be sufficiently strong to establish
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Table of symbols

A amplitude

a2 anisotropy parameter

a square root of anisotropy parameter

B, B1, B2, B* constants in power-law relations

dxx, dxy normalized rate of deformation components

Dxx, Dyy, Dxy components of rate of deformation tensor

referred to solution axes

D0
xx, D

0
yy, D

0
xy components of rate of deformation referred

to principal axes of anisotropy
�Dxx, �Dyy, �Dxy components of rate of deformation of the

basic-state
~Dxx, ~Dyy, ~Dxy perturbing values of components of rate of

deformation

f1, f2 volume fractions of constituents

h, hs functions in the flow law of a plastic solid
�I2 basic-state rate of deformation invariant

Jð1Þ2 , Jð2Þ2 , J2 component and bulk isotropic stress

invariants

K maximum shear stress at yield

L wavelength

M, M*, N, N* quantities used in perturbation analysis

m principal viscosity ratio

n, n1, n2, n* component and bulk stress exponents

q, qMECH, qmax relative growth rate parameters

sxx, sxy deviatoric stress components referred to solution

axes

s0xx, s
0
xy deviatoric stress components referred to princi-

pal axes of anisotropy

�sxx, �syy basic-state deviatoric stress components

~sxx, ~syy perturbing deviatoric stress components

sð1Þxx , s
ð2Þ
xx deviatoric stress components in materials 1 and

2

vx, vy velocity components

�vx, �vy basic-state velocity components

x, y fixed solution axes

x 0, y 0 principal axes of anisotropy

X dummy function

Y 0
2, �Y2 anisotropic invariant, referred to principal axes

of anisotropy and basic state

b angle between normal to mean foliation and

axial plane of band

d angle of slip surface in anisotropic plastic solid

G shear strain

h1, h2 viscosities of two isotropic fluids

hn, hs bulk principal normal and shear viscosities

l wavenumber

L quantity used in perturbation analysis

n tan(b)

P, P 0 functions of invariants or anisotropic invariants

of deviatoric stress

f Airy stress function

sxx, syy, sxy stress components

q angle of principal axis x 0 or of ‘foliation’ from

the x-axis, positive anticlockwise

Q slope amplitude

z height of foliation above mean plane
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structure after small bulk deformation, as in folding of a

single layer by interfacial instability (Biot, 1961). The

condition is removed in Biot’s (1964) exact analysis of

folding of a viscous layer, and in the analysis of Sherwin

and Chapple (1968). No restriction on strain magnitude is

imposed in the analyses of Bayly (1964), Cobbold

(1976), and Casey and Huggenberger (1985).

This paper deals with the inception of cylindrical

structures in a nonlinear anisotropic fluid in general plane

flow. The components in the geometric perturbation are

periodic, cylindrical deflections, q, about the mean in the

orientation of a principal axis of anisotropy, or foliation.

Provided q remains small, perturbation growth may be

followed through large basic-state deformation. Since

internal instability in rock may be moderate to weak,

regular structure may only emerge after large deformation.

The form of the cylindrical perturbation and the basic-state

rates of shortening or extension and shear parallel to the

foliation are arbitrary. This removes the restriction to

orthotropic cases in Cobbold et al. (1971) and Latham

(1985a,b). The formulation and analysis applies only to an

anisotropic fluid, excluding elastic and viscoelastic effects.
2. Constitutive relations

2.1. Introduction

Deformation of layered, laminated, or foliated rocks at a

scale that is large relative to the dimensions of their

microscopic structure components is well approximated by

treating the rock as a homogeneous anisotropic medium

(Bayly, 1964; Biot, 1965a,b; Cobbold, 1976). Bayly (1964)

treated an anisotropic linear viscous fluid, the properties of

which consist of two principal viscosities, hn in lamination-

parallel or lamination-normal shortening or extension, and

hs in lamination-parallel or lamination-normal shear. If the

laminations are alternating layers of isotropic fluid with

viscosities h1 and h2 and thickness fractions f1 and f2, the

bulk principal viscosities are exactly

hn Z f1h1 C f2h2; hs Z ðf1=h1 C f2=h2Þ
K1: (1)

To treat a fuller range in behavior in which structures

such as internal boudinage (Cobbold et al., 1971; Platt and

Vissers, 1980) are possible it is necessary to consider
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nonlinear anisotropic materials. The equivalent issue for

interfacial instability in discrete layers composed of

isotropic materials is addressed by Biot (1961) in the thin-

plate approximation, and by Parrish (1973), Fletcher (1974),

and Smith (1977, 1979).

If a layered material is composed of two isotropic power-

law fluids, exact macroscopic constitutive relations may be

derived from the component constitutive relations together

with conditions of interfacial coherence and stress aver-

aging. They are

Dxx ZKDyy ZB1 Jð1Þ2

� �½ðn1K1Þ=2�
sð1Þxx ZB2 Jð2Þ2

� �½ðn2K1Þ=2�
sð2Þxx ;

Dxy Z f1B1 Jð1Þ2

� �½ðn1K1Þ=2�
C f2B2 Jð2Þ2

� �½ðn2K1Þ=2�
n o

sxy:

(2)

where the isotropic invariants are of the form

Jð1Þ2 Z sð1Þxx

� �2
C sxy

� �2
:

The normal components of the deviatoric stress within the

constituent layers are sð1Þxx and sð2Þxx and the bulk layer-parallel

value is

f1s
ð1Þ
xx C f2s

ð2Þ
xx Z sxx: (3)

where sxx and sxy are the bulk deviatoric stress components.

B1 and B2 are constants, and n1 and n2 are the stress

exponents of the constituents. All deviatoric stress com-

ponents in plane flow of an incompressible fluid are related

to the corresponding stress components according to

sxx Z 1=2 sxx Ksyy
� �

; sxy Z sxy: (4)

The rate of deformation components are related to the

velocity components vx and vy through the kinematic

relations

Dxx Z vvx=vx; Dyy Z vvy=vy;

Dxy Z 1=2 vvy=vxCvvx=vy
� �

:
(5)

The relations (2) are difficult to use because they incorporate

the constituent or microscopic normal components in

nonlinear expressions. In the linear case, n1Zn2Z1, the

microscopic components may be eliminated once and for all

to obtain (1). Here, we aim to establish simpler nonlinear

relations that only involve macroscopic components of

stress and rate of deformation.
2.2. Anisotropic materials formed by introducing parallel

slip surfaces in an isotropic material

Cobbold et al. (1971) discuss in qualitative terms a

material that consists of a homogeneous isotropic medium

containing a closely-spaced set of weak slip surfaces (IMSS
fluid). Its bulk constitutive relations are easily derived

because only bulk stress components are involved. The bulk

constitutive relations are those of the isotropic medium to

which the contribution from the shear rate associated with

the weak slip surfaces is added. If the isotropic medium is a

power-law fluid and the slip law is nonlinear, the bulk

constitutive relations in principal coordinates x 0 and y 0

parallel and normal to the slip planes are

D0
xx ZBJ½ðnK1Þ=2�

2 s0xx;

D0
xy Z BJ½ðnK1Þ=2�

2 CB* s0xy
� �2h i½ðn*K1Þ=2�

� �
s0xy:

(6)

where B* and n* are constants in the nonlinear slip law.

Since J2 is an isotropic invariant, it is not necessary to refer

it to the principal coordinates.

To illustrate the behavior of this material, consider a set

of periodic, upright chevron folds, symmetric about their

axial planes. Let q be the limb-dip, initially small, but not in

this case restricted to small values, and refer quantities to

fixed axes x and y normal and parallel to the axial plane.

Substitute

s0xy ZKsxxsin2qCsxycos2q (7)

into the slip term in Eq. (6) and assign its contributions to

Dxx and Dxy using the transformation relations

Dxx

� �
SLIP ZK D0

xy

� �
SLIPsin2q;

Dxy

� �
SLIP ZK D0

xy

� �
SLIPcos2q:

(8)

Thus,

Dxx ZBJ½ðnK1Þ=2�
2 sxx KB*

! Ksxxsin2qCsxycos2q
� �2h i½ðn*K1Þ=2�

! Ksxxsin2qCsxycos2q
� �

sin2q;

Dxy ZBJ½ðnK1Þ=2�
2 sxy CB*

! Ksxxsin2qCsxycos2q
� �2h i½ðn*K1Þ=2�

! Ksxxsin2qCsxycos2q
� �

cos2q

(9)

Evolution of a symmetric chevron fold may be described

by the relation (e.g. Bayly, 1964; Fletcher and Pollard,

1999)

dðtanqÞ=dtZ ðdq=dtÞð1C tan2qÞZ 2ðDxy KDxxtanqÞ: (10)

Since, in the symmetric case considered here, sxyZ0 and

sxx!0, an explicit chevron folding solution may be obtained

from Eqs. (9) and (10) for the special case n*Zn.



B* =B
� �

sin22q
� �½ðnK1Þ=2�

iK1
�
:
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Combining these, the evolution equation becomes

dðtanqÞ=dtZK2Dxx B* =B
� �

sin22q
� �½ðnK1Þ=2�

cos2qsin2q 1C
h�

(11)

This may be integrated numerically to give limb dip as a

function of bulk shortening for a prescribed initial dip,

q(0)Zq0. The deviatoric stress for a given rate of

shortening is

sxxj jZ
Dxxj j

1=n

BCB*ðsin22qÞ½ðnK1Þ=2�
(12)

The signs of sxx and Dxx are both negative.

Fig. 1 shows limb-dip versus stretch parallel to the axial

plane for the ratio B*/BZ2 and stress exponents nZ1, 2, 3,

5, 10 and 100 for an ideal, straight limbed chevron fold with

an initial limb-dip of 18. In relation to the more commonly

used mZhn/hs in the linear case, B*/BZmK1, but this

relationship is not useful in the nonlinear case. For fixed B*/

B initial amplification is sluggish unless nZ1; note that the

range in stretch is extremely large. The limit behavior as n

increases, which is independent of the ratio B*/B, is obvious

from the relation (11).

In the evolution equation (11) the perturbation itself, q,

enters explicitly, and if q0Z0, no folding occurs. That is, the

linearized form of Eq. (11), to termswq, is the final result of

a stability analysis for this symmetric case. Accordingly, the

question arises as to how the formulation and analysis of

either Cobbold et al. (1971) or Latham (1985a,b), in which

explicit consideration of a geometric perturbation does not

enter, can apply to the case of a linear or nonlinear fluid.
Fig. 1. Limb-dip q (vertical axis, in degrees) of ideal chevron fold versus

axial plane parallel stretch (horizontal axis) for IMSS materials with stress

exponents nZ1, 2, 3, 5, 10, and 100 and B*/BZ2.
2.3. Alternative constitutive relations

The IMSS relations are appropriate for rocks with slip

surfaces or thin very soft layers and continuous stiff layers

of uniform thickness, so that slip surfaces within a

representative volume are parallel and planar. Rocks best

described as made up of lenticular stiff elements separated

by anastomosing weak surfaces or weak matrix do not

possess this kind of regularity. With rocks such as these in

mind (see Discussion), we formulate another equally simple

set of constitutive relations.

The constitutive relations may be formulated by using a

scalar anisotropic invariant (e.g. Hill, 1950):

Y 0
2 Z s0xx

� �2
Ca2 s0xy

� �2
: (13)

to replace the isotropic invariant, J2. Y
0
2 is only invariant for

discrete coordinate rotations of 908 about the z-axis. The

isotropic power-law, specialized for plane flow, may be

written (Calladine and Drucker, 1962)

Dxx Z vP=vsxx; Dyy Z vP=vsyy; Dxy Z vP=vsxy;

(14)

where

PZ 2B=ðnC1Þ½ �J½ðnC1Þ=2�
2 : (15)

For the case of plane flow

J2 Z 1=4 sxx Ksyy
� �2

C ð1=2Þ s2xy Cs2yx
� �

; (16)

and in the differentiation, syx and sxy are taken as distinct

(Calladine and Drucker, 1962).

A surface PZconstant is one for which the rate of

dissipation is the same at any stress point. Generalization to

an anisotropic material is obtained by using the form

P0 Z ½2B=ðnC1Þ� Y 0
2

� �½ðnC1Þ=2�
(17)

in Eq. (14), where

Y 0
2 Z 1=4 s0

xx Ks0
yy

� �2
C a2=2

� �
s0
xy

� �2
C s0

yx

� �2h i
: (18)

This yields the relations

D0
xx ZB Y 0

2

� �½ðnK1Þ=2�
s0xx; D0

xy ZB Y 0
2

� �½ðnK1Þ=2�
a2s0xx
� �

:

(19)

Comparing these relations with those for the bilaminate

power-law fluid (Eq. (2)), we may anticipate moderate to

large differences in behavior.

In contrast to the IMSS materials with varying n, chevron

folding in this material is: (i) independent of n, and (ii)
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exactly equivalent to that of a layered viscous fluid with the

identification a2Zm. To see this, repeat the steps of the

previous analysis. For example, we find

Dxy

Dxx

Z
K a2 K1
� �

sin4q

a2 C1
� �

K a2 K1
� �

cos4q
: (20)

Thus, whatever microscopic configuration of nonlinear

components might result in a fluid with constitutive

relations of the form (19), it is not equivalent to a nonlinear

IMSS material. This Y2-fluid shows strong instability at

small limb-dip as opposed to the sluggish behavior of the

IMSS material.
3. Analysis of instability in the Y2 fluid

The general form of a linearly-independent component in

the perturbation in orientation of the foliation must be taken

as

qðx; yÞZKQsin½lðxKvyÞ�: (21)

Such components retain their forms, except for changes in

Q, l, and n, during finite basic-state deformation. They are

linearly-independent because they do not interact. As a

partial illustration of this, in a finite deformation involving

basic-state foliation parallel shear, the symmetric form

qðx; yÞZKðQ=2Þ sin lðxKvyÞ
� �

Csin lðxCvyÞ
� �� �

ZKQsinðlxÞcosðlvyÞ (22)

‘breaks up’ into two component forms, the parameters of

which do not remain equal. Otherwise, the evolving form

would have to retain its initial symmetry, which is

impossible with shear parallel to foliation.

The height of the trace of foliation above its mean height

y may be written

zðx; yÞZAcos½lðxKvyÞ�: (23)

In the present analysis, only the approximation for q/1 is

treated, for which

qytanqZ vz=vx; (24)

and

QZKlA: (25)

Consider the general basic-state flow

�vx Z �DxxxC2 �Dxyy; �vy ZK �Dyyy; (26)

where �Dxx and �Dxy are homogeneous rate of deformation

components. These might be independent functions of time,

but here they are treated as having constant ratio.

The first step in the analysis is to obtain the approximate,

linearized form of the constitutive relations in x and y

coordinates taking into account the local deflection in

foliation, q, and retaining only first-order terms in this
quantity. The parameters B and a2 might also vary slightly

about their mean values, but we do not treat this possibility

here. With contributions to the perturbed quantities from q

only, we obtain the linearized relations for the perturbing

quantities, with, for example, DxxZ �DxxC ~Dxx,

~DxxyB �Y ½ðnK1Þ=2�
2 n�s2xx Ca2 �s2xy

� �
= �Y2

� �
~sxx C2 1Ka2

� �
�sxyq

� ��

C ðnK1Þa2 �sxx �sxy= �Y2

� �
~sxy
�
;

~DxyyB �Y ½ðnK1Þ=2�
2 ðnK1Þa2 �sxx �sxy= �Y2

� �
~sxx

�

C �s2xx Cna2 �s2xy
� �

= �Y2

� �
~sxy C2 1Ka2

� �
�sxxq

� ��
;

(27)

where

�Y2 Z �s2xx Ca2 �s2xy:

We seek the particular solution of the equation of rate of

deformation compatibility for the case that q is given by Eq.

(21). The compatibility equation is

v2 ~Dxx=vy
2 Cv2 ~Dyy=vx

2 K2v2 ~Dxy=vxvyZ 0: (28)

We write the deviatoric stress components in terms of the

Airy stress function

~sxx Z ð1=2Þ v2f=vy2 Kv2f=vx2
� �

; ~sxy ZKv2f=vxvy:

(29)

Entering these quantities in Eq. (27) and substituting the

results in Eq. (28) gives

v4f=vy4 K4Nv4f=vy3vxC2ð2Ma2 K1Þv4f=vy2vx2

C4Nv4f=vyvx3 Cv4f=vx4

Z 4ða2 K1Þ v2q=vy2 Kv2q=vx2
� �

�sxy K2M v2q=vxvy
� �

�sxx
� �

;

(30)

where

M Z
�D2
xx Cn �D2

xy=a
2

n �D2
xx C �D2

xy=a
2
;

N Z
ðnK1Þ �Dxx

�Dxy

n �D2
xx C �D2

xy=a
2
:

The basic-state relations between rate of deformation

components and deviatoric stress components

�Dxx ZB �Y ½ðnK1Þ=2�
2 �sxx; �Dxy ZB �Y ½ðnK1Þ=2�

2 a2 �sxy
� �

; (31)

have been used to replace deviatoric stress components with

rate of deformation components. The relation (30) is used to

obtain the stress function f, the deviatoric stresses obtained

from it through (29) are substituted into the relations (27)

which are then integrated to give the velocity components.

The rate of amplification of slope may then be found
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dðlAÞ=dtZ K �Dxx CqMECH

� �
ðlAÞZ qðlAÞ; (32)

where

qMECH ZK4 a2 K1
� �

1Kv2
� �

K2Nv
� �

M* �Dxx

�

K N* 1Kv2
� �

K2M*v
� �

�Dxy

�
1Kv2
� �2h

K4Nv 1Kv2
� �

C4Ma2v2
�K1

;

and

M* ZLM;

N* ZLN=a2;

M Z
�D2
xx Cn �D2

xy=a
2

	 


n �D2
xx C �D2

xy=a
2

	 
 ;

N Z
ðnK1Þ �Dxx

�Dxy

n �D2
xx C �D2

xy=a
2

	 
 ;

LZ
n �D2

xx C �D2
xy=a

2
	 


�Y2

:

The evolution equations are completed by the relations

dl=dtZK �Dxxl; dv=dtZ 2 �Dxy C �Dxxv: (33)

These are required to account for finite deformation

associated with the basic-state.
Fig. 2. Orthotropic case for shortening parallel to mean foliation: growth

rate q(b) for a2Z4 and nZ1, 3, 10, and 100. See text for discussion.
4. Results

4.1. Orthotropic cases

Amplification of band-like perturbations is illustrated in

Fig. 2 by plotting q versus b for a case of moderate

anisotropy, a2Z4, and for nZ1, 3, 10, and 100. q is

evaluated for foliation parallel shortening, but the results for

extension may be read off the diagram by merely switching

the sign of q. The linear viscous case, nZ1, shows the

expected maximum for bands or crenulations with axial

plane normal to foliation. Indeed, from Eq. (32), amplifica-

tion of a component at bZ0, or vZ0, is independent of n,

with qð0; a2; nÞZKSgnð �DxxÞ½4ða
2K1ÞC1�, where

Sgn(X), the signum function of argument X, is C1 for

XO0, 0 for XZ0, and K1 for X!0. Perturbations of all

orientations are amplified, at least by kinematic, or passive,

amplification, though at large b amplification is slightly less

than kinematic. For modest nonlinearity, nZ3, the peak in q

broadens, and flanking minima of negligible magnitude

occur at bz608 andK608. At nZ10, the peak is very broad,

and minima with values of K2 occur at bz558 and K558.

In extension, these minima would be peaks corresponding to

weak amplification of internal boudinage. Here, it is too

weakly amplified to develop. At very large nonlinearity, nZ
100, the behavior in shortening is qualitatively different,

with large peaks at bz358 and K358. Folding consists of

conjugate sets of crenulations separated byz708. The effect

of the basic-state shortening is to decrease the magnitude of

b of a component, so that the angle between ‘sets’ would be

expected to decrease. In extension, strong peaks for internal

boudinage are present at bz508 and K508. Components in

the perturbation at smaller angles to the foliation normal

will tend to be de-amplified. Maximum amplification in

extension will accordingly tend to occur between the peaks

and the positions where qZ0, or bz458 and K458. As

opposed to folding, internal boudinage must ‘lock-in’ by

some mechanism at finite amplitude to avoid subsequent de-

amplification. In the orthotropic case, three types of

structures might form, depending on the value of the

quantity a2/n, since a2K1 simply scales the magnitude of q,

excluding the kinematic term. These are symmetric upright

crenulation, conjugate folds, and symmetric boudinage. The

transition between vertical and conjugate crenulation may

be identified by plotting q with the kinematic part and the

factorKða2K1ÞSgnð �DxxÞ excluded. This is only a function

of a2/n. The curves, not shown, broaden and then show weak

conjugate maxima at about a2/nZ0.1, where the transition

occurs.

4.2. Simulation of structure in shortening or extension alone

parallel to mean foliation

Fold structures that might appear in naturally deformed

rock may be simulated by amplifying an initial random

perturbation. Since the analysis only applies for q/1, full
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comparison with natural structures that have foliation at

angles of 208–608 to enveloping surfaces, requires

additional analysis not carried out here.

In these simulations, initial components have inclinations

from K888 to 888 at intervals of 18. Each component is

assigned a random phase shift and a random wavelength,

over a limited range of the latter. Beginning with such a

‘random’ set of perturbations and following their evolution

over a finite deformation, a realization of the structure

formed for some pair of values a2 and n is obtained. Since

the amplitude spectrum in the finite series expansions for

slope that is computed is not tapered as wavelength

decreases, the smaller wavelengths dominate. Thus, the

patterns tend to show a strong regularity in scale of the

structures, not unlike natural structures. The results indicate

the kinds of structures produced, but do not establish a basis

for extracting valid statistics on spacing and persistence of

individual structures. Fig. 3a shows a ‘random’ initial

perturbation. In the simulations, a different initial pertur-

bation is generated for each realization. Amplitude in these

figures is adjusted upwards to produce a visually distinct

image; the first-order analysis does not strictly provide a

valid approximation for the slope magnitudes shown.
Fig. 3. Finite strain simulations in pure shear. The finite strain is indicated by th

random perturbations. (b)–(d) Deformed states, see text for discussion.
Folding after shortening of w15% for nZ1, a2Z4 (Fig.

3b) yields the expected upright crenulations for an

anisotropic viscous fluid. Folding of a highly nonlinear

fluid with nZ100, a2Z4, or a2/nZ0.04, for shortening of

w15% (Fig. 3c) yields conjugate bands. Internal boudinage

in the same fluid is obtained atw16% extension (Fig. 3d) at

the expected orientation of ‘normal kink bands.’. Structures

obtained in simulations with different initial perturbations

are quite variable. In particular, even though the bulk

deformation is foliation-parallel extension or shortening, the

structures may locally show marked asymmetry.
4.3. Combined shortening or extension and shear parallel to

the mean foliation

The only geometric factor influencing instability is band

orientation, bZtanK1(v). The kinematic factor is the ratio of

foliation-parallel shortening or extension, �Dxx, and foliation-

parallel shear, �Dxy. In the analysis, the x-axis is fixed in the

direction of mean foliation. A rotation of the foliation

relative to some other set of fixed axes has no influence on

folding except as it affects the histories of �Dxx and �Dxy. Here,

we only consider the case of a constant ratio �Dxx= �Dxy,
e shape of the boxes, which were initially square. (a) Initial state showing
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�DxyR0. Here, we use dimensionless quantities

dxx Z �Dxx=�I
1=2
2 ; dxy Z �Dxy=�I

1=2
2 ; �I2 Z �Dxx

� �2
C �Dxy

� �2
:

(34)

Since

dxy Z 1Kd2xx
� �2

: (35)

dxx fully describes the basic-state flow. Behavior of a given

material, specified by n and a2, may then be represented in

the b, dxx-plane.

Consider the relative rate of amplification, q (Eq. (32)).

To illustrate the conditions under which instability in an

anisotropic rock mass is strong, we plot contours of q/qmax,

where qmax is the maximum value of q over the entire range

K908%b%908 and K1%dxx%C1. Only positive contours

are plotted because the negative contours are related by a

center of inversion at dxxZ0, bZ0.

For a linear viscous medium, nZ1, with moderate

anisotropy, a2Z4 (Fig. 4a), the maximum instability,

qmaxZ14, is for a component with axial plane normal to

the mean foliation in foliation-parallel shortening. An

interesting new result is the presence of weak instability

in simple shear, dxxZ0, extending into the region of

combined shear plus extension. The maximum instability

in simple shear has q/qmaxz0.25 for a band inclined at

bzK158, in a ‘reverse-drag’ sense. Because band incli-

nation changes continuously, and the instability is weak,

cumulative amplification cannot be accurately computed by

assuming q for the component is constant, but a generous

upper bound is found by this approximation. For a shear

GZ1, the amplification is only z6. The asymmetry of q

about bZ0 means that after the band passes through an

orientation normal to the mean foliation, the perturbation

decays. For a fold structure to be preserved, the perturbation

must reach a slope sufficient to achieve a ‘locked-in’ status

by some mechanism.

For nZ3 (Fig. 4b), the contour q/qmaxZ0.995 is inserted

to show that the maximum rate of amplification occurs with

a small increment of superposed shear, and shifts to a

component with bwK108. In this case, the effect is

quantitatively negligible. While folding of a single

embedded layer of isotropic power-law fluid is substantially

enhanced as the stress exponent increases, this is not so for

the present anisotropic medium; the maximum value of q is

only a few percent higher than that for nZ1. At nZ10 (Fig.

4c), maximum q has now more than doubled from that for

nZ3. The largest value occurs for dxxw0.5, corresponding

to a ratio �Dxx= �DxywK1:7; equal rates of shear and short-

ening correspond to dxxZK0.707 or C0.707. Weak

instability occurs in foliation-parallel extension, dxxZ1.
Fig. 4. Values of q/qmax in b, dxx-space. Contours are 0, 0.05, 0.1, 0.2, 0.4,

0.6, 0.8, 0.9, and 0.995; all are not shown in any one figure. The horizontal

axis is band orientation b in degrees and the vertical axis is dxx. The values

of qmax are: (a) 14, (b) 14.1, and (c) 32.6.



Fig. 5. (a) Contours of maximum amplification (thick lines) and band

orientation b (thin lines) of perturbation with maximum amplification in
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Taking finite deformation into account by integrating

Eqs. (19) and (20), the component that has received the

maximum cumulative amplification may be identified. Fig.

5a gives the result for foliation-parallel pure shear at 10%

shortening. For n!10, characteristic of much ductile

behavior of rock, upright folds are formed. At large n

maximum amplification occurs for inclined bands. In pure

shear, conjugate bands at equal but opposite inclination

amplify by the same amount. A structure of this type with

conjugate bands at bZC308 andK308 is shown in Fig. 5b.

The amplitude is exaggerated; the solution only applies

when slope is small. Such a mode is termed self-confined

(Biot, 1965b). The nodal planes, or planes of zero

amplitude, are not precisely captured. This perturbation is

more strongly amplified than a symmetric fold for a

rheological behavior that is nearly rigid plastic. For initial

conditions with amplitude of one band half that of the other,

the conjugate structure is less apparent (Fig. 5c).

Because amplification is followed by de-amplification in

simple shear, it is useful to consider the behavior in finite

strain. For a shear strain of GZ2 �DxytZ0:4, amplification is

low unless n is very large (Fig. 6). Once shear carries the

most amplified band past the normal to foliation, it decays.

Consequently, amplification for positive values of b does

not increase with larger amounts of shear. Some amplifica-

tion does occur for materials with properties reasonable for

ductile rock behavior: nZ1–5, a2Z2–10, but amplifications

of 2–4 are not likely to initiate structures. Augmentation by

a small amount of shortening greatly enhances amplifica-

tion. Foliation inclined slightly in the direction of shear

within a shear zone, would be subjected to such shortening,

and folds would be produced in any case. The fact that

simple shear results in some amplification, coupled with the

existence of other amplification mechanisms (Lister and

Williams, 1979; Cobbold and Quinquis, 1980; Alsop and

Holdsworth, 2002), such as perturbations in shear zone

thickness, increase the likelihood of producing fold

structures in shear zones and similar high-shear settings.

Fig. 7a shows maximum amplification and band

inclination at a nominal strain expð�I2tÞZ1:1 as a function

of n and a2 for �DxxZK �Dxy, �DxyO0. Amplification is

substantial for large n and a2, but the maximum amplifica-

tion required for structures to persist at finite deformation

depends on the magnitude of the initial perturbations. It

seems reasonable to suppose that the transition between

selective amplification and finite-amplitude evolution

occurs at maximum slopes of 108–158. If the initial

magnitude of the perturbation is 0.58–18, the required

amplification is 20–40. For this small strain, a viscous

medium, nZ1, must possess very high anisotropy, a2O10.

Only moderate anisotropy, a2O4, is required for a strongly

anisotropic material, nZ10. Axial planes of components
log10(n), a
2-space. (b) Symmetric structure of form according to Eq. (22).

(c) Asymmetric structure of the same type corresponding to the amplitude

of the left-dipping band equal to half that of the right-dipping bands.



Fig. 6. Amplification in simple shear for a shear strain GZ0.4. Thick

contours are maximum amplification and thin contours are orientation of

the most-amplified component.
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with strong amplification are inclined at a small angle to the

foliation normal in the reverse-drag sense.

Fig. 7b gives the results for foliation-parallel extension
�Dxx!0, �DxyZ0 at exp(I2t)Z1.22; a larger range in n is

covered. Large values of n represent a rigid-plastic solid at

yield or, approximately, quasi-brittle behavior. Recall that

large values of n may arise in an approximate analysis of

strain softening materials (Neurath and Smith, 1982). Here,

values nO50–100 are required to reach a maximum

amplification O20. If the material were truly plastic or

brittle, instability would set in after minimal strain. The

relatively weak dependence on the strength of anisotropy,

a2, above a value of 3 or 4 is of interest. The structure

represented here is internal boudinage or internal necking

(Cobbold et al., 1971; Platt and Vissers, 1980). In pure

extension, two band orientations yield maximum amplifica-

tion; only the negative value is given here.
Fig. 7. As in Fig. 6, but for (a) DxxZKDxy!0; and (b) DxxZ1, DxyZ0.
5. Discussion
5.1. What kinds of composite rocks are approximated by the

Y2-fluid?

Application of the Y2-fluid constitutive relations for

plane flow of an anisotropic power-law fluid (Eq. (11)) is

supported by their simplicity. Recall that the isotropic

relations themselves are not constructed ab initio from the

properties of the elementary components of a rock. For

example, they might typically be applied to a rock

consisting of one or more mineral components, single

crystals of which are anisotropic in their rheological

behavior. The isotropic relations are adequate as long as
the lattice preferred orientations of the minerals are weak

and strongly inequant aggregates of the minerals are not

present. Thus, ab initio construction of constitutive

relations, which may easily be done for layered materials,

is not always thought of as a necessary test of applicability.

Nonetheless, it would be useful to show that the Y2-fluid

approximation arises naturally for some configurations of

constituents likely to represent natural composite rocks. In

this case, we would be able to estimate the parameter a2 in

the same way that hn and hs may be estimated for a

laminated viscous fluid.

The generalization was first suggested by consideration

of the yield condition and flow law for an incompressible

anisotropic plastic solid (Hill, 1950). For an isotropic von



Fig. 8. Yield conditions for anisotropic plastic solids. (a) Segmented and

elliptical yield surfaces for a single set of weak slip surfaces with yield

stress K/a, aZ2. (b) Elliptical yield surface for a2Z2 compared with that of

a material with multiple sets of weak slip surfaces.
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Mises plastic solid, specialized for plane flow, the yield

condition is:

J2 Z s2xx Cs2xy ZK2; (36)

and the flow law is:

Dxx ZKDyy Z hsxx; Dxy Z hsxy; (37)

where hZh(x,y) is not a material property but a function

determined from the equation of compatibility and the

velocity boundary conditions.

Now suppose, as in the earlier discussion of the IMSS

fluid, that the material is cut by a set of weak slip surfaces

that yield at a lower resolved shear stress

s0xy
� �2 Z ðK=aÞ2; (38)

where the prime denotes principal axes. The yield condition

in s0xx; s
0
xy-space (Fig. 8a), consists of the segments of the

circle,

s0xx
� �2

C s0xy
� �2 ZK2; (39)

and of the two straight lines,

s0xy ZGK=a; (40)

that are jointly interior to each other. The flow law

corresponds to the normality of the vector D0
xx;D

0
xy

� �
to

the yield locus. On the circular arcs, a flow law of the form

(37) applies. On the straight line segments the only

deformation allowed is bulk shear associated with slip on

the surfaces, or

D0
xx Z 0; D0

xy Z hss
0
xy; (41)

where hs is a function of position. At the four vertices, the

rate of deformation vector is not uniquely determined, but

lies between its limiting orientations on the segments.

Since the state of stress is uniquely determined at the

vertices, we may write for the vertex where s0xx!0, s0xyO0,

for example,

D0
xx ZKhK 1K1=a2

� �1=2
; D0

xy Z hChs
� �

K=a: (42)

It would be possible, for example, to solve for the evolution

of seeded low-amplitude chevron folds in such a material, as

in the earlier sections.

An approximation to this material is to replace the

segmented yield condition, with its vertices, with the

smooth inscribed ellipse

Y 0
2 Z s0xx

� �2
Ca2 s0xy

� �2
: (43)

The flow law based on normality is then

D0
xx Z hs0xx; D0

xy Z h a2s0xx
� �

: (44)

Many other convex surfaces might be chosen, including

those more closely fitting the segmented yield surface.

Now consider what the yield condition would be if the

isotropic medium were cut by two equivalent sets of weak
surfaces makings angles of Gd to the x 0-axis. The

conditions for slip on these sets are

Ks0xxsin2dCs0xycos2d

ZGK=a; Cs0xxsin2dCs0xycos2dZGK=a: (45)

These four straight lines define an interior diamond-

shaped region. The boundary of the region jointly interior to

this and to the circle of radius K is the yield locus. The locus

for a single pair of slip surface sets can be ‘read off’ the

more complex yield surface in Fig. 8b, for a2Z2, by

selecting four lines with the same slope magnitude out of the

fans of lines present. For example, the locus for sets of



Fig. 9. Map view of foliation contours for the sum of two band-like

components in the geometric perturbation in foliation.
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surfaces at dZG168 is given by selecting the four lines with

steepest slope. This locus has six vertices, two on the s0xy-

axis, and four where the straight lines cut the circle of radius

K. Deformation associated with the former consists of dual

slip on both sets of surfaces, whereas slip on the latter occurs

on one set of surfaces and deformation includes that of the

isotropic material. Since the slip surfaces must be viewed as

material surfaces rather than the slip systems of a crystal,

dual slip cannot take place without disruption of the

idealized structure posited, a difficulty ignored here. The

yield condition may be smoothed by supposing many

additional sets of surfaces are present, filling the range

between the two limiting sets. In Fig. 8b, loci for surfaces at

angles K168!d!C168 at intervals of 28 are plotted. The

yield condition is then the boundary of the interior region in

Fig. 8b. In either case, the elliptical yield condition

approximates the six- or four-vertex yield conditions.

Thus, the suggestion advanced is that the smooth

elliptical condition, Y2ZK2, and the associated flow law,

applies to composite rocks in which a marked imperfection

in the regularity of a stiff-soft lamination or a single set of

parallel planar slip surfaces exists. In the most easily

visualized class of such materials, stiff elements are

lenticular in form and are bounded by an anastomosing or

web-like set of weak surfaces or of a corresponding

continuous matrix of soft material. This case corresponds

formally with the limit n/N of the anisotropic Y2-fluid. It

may be shown that the plane flow relations for any

anisotropic composite made up of linear viscous com-

ponents may be described by the two principal viscosities hn
and hs. The Y2-fluid for nZ1 is of this form, with a2Zhn/hs.

We accordingly hypothesize that the Y2-fluid is an

appropriate approximation for anisotropic power-law fluids

of arbitrary n and with comparable internal constitution.

Computations for arbitrary n that might support this

hypothesis are more complex than those for the plastic

limit, and have not been done. Constitutive relations in

plane flow of monomineralic or polymineralic rocks with

lattice preferred orientation might also be approximated by

the Y2-fluid.

5.2. Extension to three dimensions

Since the linearly independent components on the

geometric perturbation are band-like, it must be possible

to extend the analysis to three dimensions. A band with

arbitrary dip and strike, relative to the mean foliation, would

have associated with it a component in the perturbing flow.

Such a component would consist of a plane flow, relative to

a plane cutting the band and containing its normal, and an

antiplane, flow in which the velocity is normal to the plane

of section and dependent on the two coordinates of position

within the section. Only the plane flow affects the evolution

of the component in the geometric perturbation. In the

nonlinear case, the plane and antiplane flows would couple.

The analysis is substantially more complicated than the
present one, but no real difficulty is anticipated. Such an

analysis could be applied to the initiation of three-

dimensional fold forms in shear zones (Alsop and Holds-

worth, 2002). Such a form may be constructed as the sum of

two or more band-like components. For example, Fig. 9

shows a map view of structure contours for the sum of two

bands, one striking ‘N–S’ and the other striking ‘N458W’,

with relative amplitudes of 1 and 0.5. Amplification,

followed by large shear strain might then produce sheath

folds.
6. Conclusions
(1)
 A set of constitutive relations has been formulated for

an anisotropic nonlinear power-law fluid in plane flow.

These reduce to the isotropic form when the anisotropy

parameter a2Z1. The material does not approximate an

isotropic power-law fluid cut by a single set of planar,

parallel weak slip surfaces, but approximates a material

in which such surfaces are irregular or anastomosing.
(2)
 Growth of ideal straight-limbed symmetric chevron

folds in this material in shortening parallel to their axial

planes at a prescribed bulk rate of shortening does not

depend upon the stress exponent, n. This is also true for

a bilaminate composed of two isotropic power-law

fluids, both of which have the same stress exponent,

n1Zn2.
(3)
 Non-interacting, or linearly-independent perturbations

in the inclination of foliation from the mean are band-

like. Amplification in a homogeneous basic-state plane

flow in which both �Dxx and �Dxy may be non-zero gives

rise to a variety of structures for a fluid with rheological

parameters n and a2. Internal boudinage requires nOO
1, or quasi-plastic behavior. Such large values might be

achieved by strain-softening (Neurath and Smith,

1982).
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(4)
 A weak instability is present in simple shear alone. This

is distinct from that suggested by Platt (1984).
(5)
 The analysis may be extended to three dimensions,

since linearly independent perturbations must be band-

like. Hence, the resulting perturbing flow for each

consists of a plane flow of the type considered here, but

with different form of the coefficients as derived from

the linearization of the constitutive relations, and an

anti-plane flow, which will not contribute to the

amplification of the perturbation.
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